Revista Científica Certificada con la Norma Internacional ISO 9001:2015 - SGS

Revista de Investigación Científica y Tecnológica Alpha Centauri - Professionals On Line ISSNe: 2709-4502

Limpieza del agua miel proveniente del beneficiado húmedo del café mediante polímeros naturales orgánicos
Nuevo envío
PDF
HTML
AUDIO MP3

Palabras clave

turbidez
agua
residuos
contaminación
café

Cómo citar

Limpieza del agua miel proveniente del beneficiado húmedo del café mediante polímeros naturales orgánicos (J. C. Jaulis Cancho, J. G. Juscamaita Morales, E. Villanueva Santos, J. E. Gutiérrez Collao, & J. O. Dilas-Jiménez , Trans.). (2022). Alpha Centauri, 3(3), 02-10. https://doi.org/10.47422/ac.v3i3.84

Resumen

El procesamiento húmedo del café genera un residuo líquido llamado agua miel, el cual se ha convertido en un problema latente a ser resuelto para las organizaciones cafetaleras en el Perú con miras a una caficultura sostenible y para una producción que apunta a mercados especiales. El presente trabajo tuvo como objetivo desarrollar un protocolo para el tratamiento de aguas mieles del beneficio húmedo del café mediante el uso de polímeros naturales orgánicos, preparándose caldos de polímero los cuales fueron aplicados a las aguas mieles. Se seleccionó dos polímeros más efectivos en la limpieza del agua miel, uno de carga aniónica y otro de carga catiónica. Se trabajó con tres pequeñas plantas de beneficiado húmedo de productores cafetaleros de la Cooperativa Agraria Valles del Café donde se obtuvieron importantes resultados en cuanto a la reducción de al menos 8 a 10 indicadores, de 15 indicadores fisicoquímicos y microbiológicos analizados, lográndose así superar los Límites Máximos Permisibles de varios indicadores de la norma peruana en cuanto a agua para riego nivel tres.

PDF
HTML
AUDIO MP3

Referencias

Alemayehu, Y. A., Asfaw, S. L., & Terfie, T. A. (2021). Reusing Coffee Processing Wastewater and Human Urine as a Nutrient Source: Effect on Cabbage Cultivation. Waste and Biomass Valorization, 12(11), 6165–6175. https://doi.org/10.1007/s12649-021-01451-9

Álvarez, J., Smeltekop, H., & Loza-murguia, M. (2011). Evaluation of a treatment system wastewater prebeneficiado of coffee (Coffea arabica) implemented in the community Carmen Pampa province of Nor Yungas of La Paz Department. Journal of the Selva Andina Research Society, 2(1), 34–42.

Arteaga-Cuba, M. N., Dilas-Jiménez, J. O., Díaz, N., Miranda, O. C., García, J. E., & Vassallo, C. (2021). Isolation and identification of a native microbial consortium for the coffee pulp degradation above 2000 masl. Coffee Science, 16, e161810. https://doi.org/10.25186/.v16i.1810

Bancessi, A., Pinto, M. M. F., Duarte, E., Catarino, L., & Nazareth, T. (2020). The antimicrobial properties of Moringa oleifera Lam. for water treatment: a systematic review. SN Applied Sciences, 2(3). https://doi.org/10.1007/s42452-020-2142-4

Beyene, A., Yemane, D., Addis, T., Assayie, A. A., & Triest, L. (2014). Experimental evaluation of anaerobic digestion for coffee wastewater treatment and its biomethane recovery potential. International Journal of Environmental Science and Technology, 11(7), 1881–1886. https://doi.org/10.1007/s13762-013-0339-4

Botello Suárez, W. A., da Silva Vantini, J., Duda, R. M., Giachetto, P. F., Cintra, L. C., Tiraboschi Ferro, M. I., & de Oliveira, R. A. (2018). Predominance of syntrophic bacteria, Methanosaeta and Methanoculleus in a two-stage up-flow anaerobic sludge blanket reactor treating coffee processing wastewater at high organic loading rate. Bioresource Technology, 268, 158–168. https://doi.org/10.1016/j.biortech.2018.06.091

Chagas, P. M. B., Torres, J. A., Silva, M. C., & Corrêa, A. D. (2015). Immobilized soybean hull peroxidase for the oxidation of phenolic compounds in coffee processing wastewater. International Journal of Biological Macromolecules, 81, 568–575. https://doi.org/10.1016/j.ijbiomac.2015.08.061

Chen, L., Chen, D., & Wu, C. (2003). A New Approach for the Flocculation Mechanism of Chitosan. Journal of Polymers and the Environment, 11(3), 87–92. https://doi.org/10.1023/A:1024656813244

Dao, V. H., Cameron, N. R., & Saito, K. (2015). Synthesis, properties and performance of organic polymers employed in flocculation applications. Polymer Chemistry, 7(1), 11–25. https://doi.org/10.1039/c5py01572c

Devi, R. (2010). Innovative technology of COD and BOD reduction from coffee processing wastewater using Avocado Seed Carbon (ASC). Water, Air, and Soil Pollution, 207(1–4), 299–306. https://doi.org/10.1007/s11270-009-0137-2

Diaz, C., & Carmen, M. (2017). Linea de base del café en el Perú. file:///C:/Users/Usuario/Downloads/Libro cafe_PNUD_PE.pdf

Gallego Ocampo, H. L., & Mejía Francia, M. (2016). La electrocoagulación como alternativa de tratramiento de aguas mieles provenientes del proceso de beneficio húmedo del café. Vitae, 23, S684–S688. https://www.proquest.com/docview/1783661288?pq-origsite=gscholar&fromopenview=true

Garay Román, J., & Rivero Méndez, J. (2014). Biosistema para purificar aguas residuales del beneficio húmedo de café, distrito La Coipa, departamento de Cajamarca, 2014. Manglar, 11(1), 43–50.

Gardiman Junior, B. S., Guimarães, D., Freitas, W. S., Reis, E. F., & O. Garcia, G. (2021). Treatment of Coffee Wastewater with recirculation: optimization and validation. International Journal of Environmental Science and Technology, 19(5), 3963–3974. https://doi.org/10.1007/s13762-021-03340-z

Gautam, A. K., Markandeya, Singh, N. B., Shukla, S. P., & Mohan, D. (2020). Lead removal efficiency of various natural adsorbents (Moringa oleifera, Prosopis juliflora, peanut shell) from textile wastewater. SN Applied Sciences, 2(2). https://doi.org/10.1007/s42452-020-2065-0

Gutiérrez Guzmán, N., Valencia Granada, E., & Aragon Calderon, R. A. (2014). EFICIENCIA DE REMOCIÓN EN SISTEMAS DE TRATAMIENTO DE AGUAS RESIDUALES DEL BENEFICIO DE CAFÉ (Coffea arabica). Colombia Forestal, 17(2), 151. https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a02

Ijanu, E. M., Kamaruddin, M. A., & Norashiddin, F. A. (2019). Coffee processing wastewater treatment: a critical review on current treatment technologies with a proposed alternative. Applied Water Science, 10(1). https://doi.org/10.1007/s13201-019-1091-9

JNC. (2022). Café: Exportaciones por empresa-Enero a diciembre 2021. https://juntadelcafe.org.pe/wp-content/uploads/2022/03/Exportacio?n-de-Cafe?-Enero-Diciembre-Por-Empresa2021.pdf

Lichtfouse, E., Morin-Crini, N., Fourmentin, M., Zemmouri, H., do Carmo Nascimento, I. O., Queiroz, L. M., Tadza, M. Y. M., Picos-Corrales, L. A., Pei, H., Wilson, L. D., & Crini, G. (2019). Chitosan for direct bioflocculation of wastewater. Environmental Chemistry Letters, 17(4), 1603–1621. https://doi.org/10.1007/s10311-019-00900-1

Madrona, G. S., Serpelloni, G. B., Salcedo Vieira, A. M., Nishi, L., Cardoso, K. C., & Bergamasco, R. (2010). Study of the effect of Saline solution on the extraction of the Moringa oleifera seed’s active component for water treatment. Water, Air, and Soil Pollution, 211(1–4), 409–415. https://doi.org/10.1007/s11270-009-0309-0

Mateus, G. A. P., Formentini-Schmitt, D. M., Nishi, L., Fagundes-Klen, M. R., Gomes, R. G., & Bergamasco, R. (2017). Coagulation/Flocculation with Moringa oleifera and Membrane Filtration for Dairy Wastewater Treatment. Water, Air, and Soil Pollution, 228, 342(9). https://doi.org/10.1007/s11270-017-3509-z

Decreto Supremo N° 004-2017-MINAM, (2017). https://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf

Pires, J. F., Cardoso, L. de S., Schwan, R. F., & Silva, C. F. (2017). Diversity of microbiota found in coffee processing wastewater treatment plant. World Journal of Microbiology and Biotechnology, 33(12), 0. https://doi.org/10.1007/s11274-017-2372-9

Ramírez, L. E. C., Rubiano, C. C. P., Arias, H. P., & Galindo, D. H. (2021). Determination of the microbiological quality of the Toca-Boyacá River, downstream Tuaneca and the center sectors. Revista Lasallista de Investigacion, 18(1), 192–202. https://doi.org/10.22507/rli.v18n1a12

Revelo, A., Proaño, D., & Banchón, C. (2015). Textile wastewater biocoagulation by Caesalpinia spinosa extracts. Enfoque UTE, 6(1), 1–12. http://ingenieria.ute.edu.ec/enfoqueute/index.php/revista/article/view/50%0Ahttp://ingenieria.ute.edu.ec/enfoqueute/index.php/revista/article/download/50/54

Reyes-Prado, M. A., Ramírez-Pereda, B., Ramírez, K., Gonzáles Huitrón, V., Rodríguez-Mata, A. E., Uriarte Aceves, P. M., & Amabilis-Sosa, L. (2022). Recuperación de nutrientes y degradación de materia orgánica de agua residual agrícola por medio de un sistema uv/h2O2 optimizado. Revista Internacional de Contaminación Ambiental, 38, 235–248. https://doi.org/https://doi.org/10.20937/RICA.54236

Rodriguez Jimenez, D. M., & Gallego Suárez, D. D. J. (2019). Evaluación del quitosano como coagulante para el tratamiento de efluentes piscícolas. Revista Colombiana de Biotecnología, 21(1), 6–17. https://doi.org/10.15446/rev.colomb.biote.v21n1.73340

Rodríguez, S. C., Asmundis, C. L., Ayala, M. T., & Arzú, O. R. (2018). Presencia de indicadores microbiológicos en agua para consumo humano en San Cosme (Corrientes, Argentina). Revista Veterinaria, 29(1), 9. https://doi.org/10.30972/vet.2912779

Rossmann, M., Matos, A. T., Abreu, E. C., Silva, F. F., & Borges, A. C. (2013). Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands. Journal of Environmental Management, 128, 912–919. https://doi.org/10.1016/j.jenvman.2013.06.045

Sengupta, B., Priyadarshinee, R., Roy, A., Banerjee, A., Malaviya, A., Singha, S., Mandal, T., & Kumar, A. (2020). Toward sustainable and eco-friendly production of coffee: abatement of wastewater and evaluation of its potential valorization. Clean Technologies and Environmental Policy, 22(5), 995–1014. https://doi.org/10.1007/s10098-020-01841-y

Shanmugam, M. K., & Gummadi, S. N. (2020). Degradation of synthetic coffee wastewater using induced cells of Pseudomonas sp. NCIM 5235. International Journal of Environmental Science and Technology, 18(10), 3013–3022. https://doi.org/10.1007/s13762-020-03019-x

Sharma, P. (2008). Removal of Cd (II) and Pb (II) from aqueous environment using Moringa oleifera seeds as biosorbent: A low cost and ecofriendly technique for water purification. Transactions of the Indian Institute of Metals, 61(2–3), 107–110. https://doi.org/10.1007/s12666-008-0027-0

Suhartini, S., Hidayat, N., & Rosaliana, E. (2013). Influence of powdered Moringa oleifera seeds and natural filter media on the characteristics of tapioca starch wastewater. International Journal of Recycling of Organic Waste in Agriculture, 2(1), 1–11. https://doi.org/10.1186/2251-7715-2-12

Torres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., & Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006

Valeriano-Mamani, J. J., & Matos-Chamorro, R. A. (2019). Influence of Tara (Caesalpinia spinosa) Gum as an Aid in the Coagulation-Flocculation Process to Remove the Turbidity of an Artificial Suspension of Bentonite. Informacion Tecnologica, 30(5), 299–308. https://doi.org/10.4067/S0718-07642019000500299

Villa-Montoya, A. C., Ferro, M. I. T., & de Oliveira, R. A. (2016). Removal of phenols and methane production with coffee processing wastewater supplemented with phosphorous. International Journal of Environmental Science and Technology, 14(1), 61–74. https://doi.org/10.1007/s13762-016-1124-y

Villanueva-Rodríguez, M., Bello-Mendoza, R., Wareham, D. G., Ruiz-Ruiz, E. J., & Maya-Treviño, M. L. (2014). Discoloration and organic matter removal from coffee wastewater by electrochemical advanced oxidation processes. Water, Air, and Soil Pollution, 225(12). https://doi.org/10.1007/s11270-014-2204-6

Wang, B., Zhang, Y., & Miao, C. (2011). Preparation of cationic chitosan-polyacrylamide flocculant and its properties in wastewater treatment. Journal of Ocean University of China, 10(1), 42–46. https://doi.org/10.1007/s11802-011-1741-5

Wang, L. K., Wang, M. H., & Kao, J. F. (1977). Application and determination of organic polymers. Water, Air, and Soil Pollution, 9(3), 337–348. https://doi.org/10.1007/BF00280682

Wisniewski, C. M., Slater, C. S., & Savelski, M. J. (2018). Dynamic vibratory membrane processing for use in water recovery from soluble coffee product manufacturing wastewater. Clean Technologies and Environmental Policy, 20(8), 1791–1803. https://doi.org/10.1007/s10098-018-1569-4

Yang, H., Yuan, B., Lu, Y., & Cheng, R. (2008). Preparation of magnetic chitosan microspheres and its applications in wastewater treatment. Science in China, Series B: Chemistry, 52(3), 249–256. https://doi.org/10.1007/s11426-008-0109-1

Zaid, A. Q., Ghazali, S. B., Mutamim, N. S. A., & Olalere, O. A. (2019). Experimental optimization of Moringa oleifera seed powder as bio-coagulants in water treatment process. SN Applied Sciences, 1(5). https://doi.org/10.1007/s42452-019-0518-0

Zambrano-Franco, D. A., & Izaza-Hinestroza, J. D. (1998). Demanda química de oxígeno y nitrógeno total, de los subproductos del proceso tradicional de beneficio húmedo del café. Cenicafé, 49(4), 279–289. https://doi.org/10.15332/dt.inv.2020.01508

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2022 Juan C.M. Jaulis Cancho, Juan G. Juscamaita Morales, Edith Villanueva Santos, Jairo E. Gutiérrez Collao, Josué Otoniel Dilas-Jiménez