Revista Científica Certificada con la Norma Internacional ISO 9001:2015 - SGS

Revista de Investigación Científica y Tecnológica Alpha Centauri - Professionals On Line ISSNe: 2709-4502

Proposal for an ethanol plant saving water, energy and reducing stillage
Nuevo envío
alphacentauri@professionals.pe

PDF (Spanish)
HTML (Spanish)

Keywords

ethanol
stillage
fermentation
distillery

How to Cite

Proposal for an ethanol plant saving water, energy and reducing stillage (A. E. Guerrero Escobedo, J. L. Mendoza Bobadilla, J. A. Guerrero Llúncor, C. Vasquez Blas, R. F. Rodriguez Espinoza, & S. R. Celis Rojas , Trans.). (2022). Alpha Centauri, 3(1), 24-33. https://doi.org/10.47422/ac.v3i1.42

Abstract

Saving water is vital for the environmental sustainability of the processes; In this sense, in ethanolic fermentation it is used for the dilution of sugary honeys, for the treatment of yeast and cleaning operations. Reducing water in fermentation allows obtaining wines with a higher alcohol content and, therefore, reducing the generation of the effluent known as vinasse in the distillery. In the present work a high gravity fermentation process is proposed, with a temperature of 30 ° C, must feeding time of 20 hours and total time of 53 hours, obtaining as results a concentration of 126.12 g / L of ethanol, a 45.66% reduction in water consumption, a 38.03% reduction in stillage generation and a 38.35% reduction in energy consumption. Mathematical software was required for the resolution of the mathematical fermentation models and a chemical process simulator for the resolution of the mass and energy balances in the distillation columns.

PDF (Spanish)
HTML (Spanish)

References

Arshad, M., Hussain, T., Iqbal, M., & Abbas, M. (2017). Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian Journal of Microbiology, 48(3), 403–409.

Ccopa Rivera, E., Yamakawa, C. K., Saad, M. B. W., Atala, D. I. P., Ambrosio, W. B., Bonomi, A., Junior, J., & Rossell, C. E. V. (2017). Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions. Biochemical Engineering Journal, 119, 42–51.

Christofoleti-Furlan, R. M., Portugal, C. B., Varize, C. S., Muynarsk, E. S. M., Alcarde, A. R., & Basso, L. C. (2020). Unraveling Brazilian bioethanol yeasts as novel starters for high-gravity brewing. Food Research International, 135(February), 109282.

Debourg, A. (2010). Yeast management and high gravity fermentation. Cerevisia, 35(1), 16–22.

Feng, S., Srinivasan, S., & Lin, Y. H. (2012). Redox potential-driven repeated batch ethanol fermentation under very-high-gravity conditions. Process Biochemistry, 47(3), 523–527.

K?osowski, G., & Mikulski, D. (2018). Complementarity of the raw material composition of Very High Gravity (VHG) mashes as a method to improve efficiency of the alcoholic fermentation process. Process Biochemistry, 74(August), 1–9.

Lin, Y. H., & Liu, C. G. (2014). Process design for very-high-gravity ethanol fermentation. Energy Procedia, 61, 2725–2728.

Liu, C. G., Lin, Y. H., & Bai, F. W. (2011a). A kinetic growth model for Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity environment. Biochemical Engineering Journal, 56(1–2), 63–68.

Liu, C. G., Lin, Y. H., & Bai, F. W. (2011b). Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation. Journal of Biotechnology, 153(1–2), 42–47.

Magazoni, F. C., Monteiro, J. B., Deucher, R., Da Costa Filho, M. V. A., Cardemil, J. M., & Colle, S. (2009). Cooling of ethanol fermentation process using absorption chillers. ECOS 2009 - 22nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 1465–1476.

Marcato, A. C. de C., Souza, C. P. de, Paiva, A. B. de, Eismann, C. E., Navarro, F. F., Camargo, A. F. M., Menegário, A. A., & Fontanetti, C. S. (2019). Hybrid treatment system for remediation of sugarcane vinasse. Science of the Total Environment, 659, 115–121.

Nagarajan, S., & Ranade, V. V. (2020). Pre-treatment of distillery spent wash (vinasse) with vortex based cavitation and its influence on biogas generation. Bioresource Technology Reports, 11, 100480.

Otieno, B., & Apollo, S. (2021). Energy recovery from biomethanation of vinasse and its potential application in ozonation post-treatment for removal of biorecalcitrant organic compounds. Journal of Water Process Engineering, 39(July), 101723.

Pereira, F. B., Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology, 101(20), 7856–7863.

Phukoetphim, N., Salakkam, A., Laopaiboon, P., & Laopaiboon, L. (2017). Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models. Journal of Biotechnology, 243, 69–75.

Silva, A. F. R., Magalhães, N. C., Cunha, P. V. M., Amaral, M. C. S., & Koch, K. (2020). Influence of COD/SO42? ratio on vinasse treatment performance by two-stage anaerobic membrane bioreactor. Journal of Environmental Management, 259(January).

Yamakawa, C. K., Ccopa Rivera, E., Kwon, H., Herrera Agudelo, W. E., Saad, M. B. W., Leal, J., Rossell, C. E. V., Bonomi, A., & Maciel Filho, R. (2019). Study of influence of yeast cells treatment on sugarcane ethanol fermentation: Operating conditions and kinetics. Biochemical Engineering Journal, 147(March), 1–10.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Adolfo Enrique Guerrero Escobedo, Jorge Luis Mendoza Bobadilla, Juan Adolfo Guerrero Llúncor, Carlos Vasquez Blas, Ronald Fernando Rodriguez Espinoza, Santos Ricardo Celis Rojas