Abstract
This research addresses the global problem of water scarcity and lack of sanitation, which affects 2.1 billion people (WHO, 2017), and the similar situation in Huamanga, where residents demand improvements in sanitation services. Given this concern, the use of organic coagulants, specifically Moringa mucilage, in the treatment of meteoric waters was evaluated. Laboratory experiments showed that an optimal dose of 15 mg/L reduced turbidity by 55%, reaching levels below 5 NTU, in line with WHO standards. Additionally, improvements were observed in electrical conductivity (<1,500 µS/cm), total dissolved solids (<450 mg/L), and pH (6.8-7.2), ensuring the suitability of the treated water for human consumption. These results coincide with previous studies and confirm the effectiveness of Moringa mucilage as a natural coagulant. Its use not only improved water quality by reducing contaminants and pathogenic microorganisms, but also positioned itself as a sustainable and economical alternative to chemical coagulants. The study highlights the feasibility of employing Moringa in regions such as Huamanga, improving access to safe and sustainable drinking water, and providing a framework for future research and practical applications that could positively impact the quality of life of the local population.
References
Alemán-Nava, G. S., et al. (2018). Coagulation–flocculation performance in water treatment using iron(III) salts and polymer. Environmental Science and Pollution Research, 25(3), 2423-2430.
Molina-Guzmán, J. A., et al. (2019). Effect of coagulant type, dosage and mixing speed on floc formation and sedimentation in wastewater treatment. Journal of Water Process Engineering, 27, 1-8.
Müller, A., et al. (2020). Influence of water quality and coagulant dosing on floc size distribution and settling velocity in different types of flocculators. Separation and Purification Technology, 238, 116408.
Barros, R. M., Amaral, M. C. S., Vieira, J. M. P., Borges, C. P., & Cordeiro, R. F. (2018). Floculação ascendente: Uma alternativa para o tratamento de esgoto sanitário. Encontro de Engenharia Sanitária e Ambiental (ENASB).
Lopes, E. F., Xavier, F. A., Souza, R. B., & Nascimento, N. R. (2015). Desenvolvimento de um sistema de floculação para tratamento de água utilizando um floculador de tubo. Revista DAE, 63(200), 36-45.
MINSA (2019). Norma sanitaria para la calidad del agua de consumo humano. Resolución Ministerial N° 0312-2019/MINSA. Recuperado de https://www.gob.pe/institucion/minsa/normas-legales/1072512-0312-2019-minsa
Lee, J. G., Lee, J., Lee, J. Y., & Kim, S. D. (2019). Natural organic coagulants: a review of current research. Water Science and Technology, 79(9), 1687-1700. https://doi.org/10.2166/wst.2019.157
Zhang, X., Li, Y., Guo, Y., & Wang, H. (2020). A review of coagulation–flocculation with organic polymer in water treatment. Journal of Environmental Management, 260, 110092. https://doi.org/10.1016/j.jenvman.2019.110092.
Bolto, B., Gregory, J., & Zhang, J. (2019). Organic coagulants in water and wastewater treatment. Water Research, 151, 36-47. https://doi.org/10.1016/j.watres.2018.11.050
Estrada-Arriaga, E. B., Reyes-Rodríguez, L. F., González-Pérez, V., & Roa-Morales, G. (2020). Coagulantes orgánicos e inorgánicos utilizados en el tratamiento de agua potable. En Tecnologías para la potabilización del agua (pp. 1-22). Universidad Autónoma de Zacatecas. https://doi.org/10.13140/RG.2.2.13779.34081
Zhang, Y., Zhang, X., Chen, Y., & Sun, X. (2019). Review of natural and synthetic organic coagulants for water treatment. Water Science and Technology, 80(3), 451-463. https://doi.org/10.2166/wst.2019.274.
Lai, W., Li, X., Liang, Y., Guo, X., & Chen, Y. (2019). Optimization of coagulation performance by a biodegradable cationic flocculant from wastewater sludge. Journal of Environmental Management, 249, 109362. doi: 10.1016/j.jenvman.2019.109362
Dehghani, M. H., Farzadkia, M., Gholami, M., & Alimohammadi, M. (2020). Efficiency of a novel cationic natural coagulant for water treatment: Optimization of coagulation–flocculation process using response surface methodology. Journal of Environmental Chemical Engineering, 8(3), 103701. doi: 10.1016/j.jece.2020.103701
United States Environmental Protection Agency. (2019). Water quality standards. https://www.epa.gov/wqs-tech/water-quality-standards
World Health Organization. (2017). Guidelines for drinking-water quality (4th ed.). https://www.who.int/publications/i/item/9789241549950
Organización Mundial de la Salud (OMS). (2021). Guías para la calidad del agua potable. Recuperado el 6 de abril de 2023, de https://www.who.int/es/news-room/fact-sheets/detail/drinking-water
World Health Organization. (2011). Guidelines for drinking-water quality (4th ed.). WHO Press. https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=5F5B04659D88CFC695839F03D7481E6B?sequence=1
Barrett, J. M., Rose, J. B., & Gerba, C. P. (2020). Pathogens in water. In Environmental microbiology (pp. 461-481). Academic Press.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Edward León Palacios