Resumen
El ahorro de agua es vital para la sostenibilidad ambiental de los procesos; en este sentido, en la fermentación etanólica se la utiliza para la dilución de las mieles azucaradas, para el tratamiento de la levadura y operaciones de limpieza. Reducir agua en la fermentación permite obtener vinos con mayor graduación alcohólica y, por lo tanto, la reducción de la generación del efluente conocido como vinaza en la destilería. En el presente trabajo se propone un proceso de fermentación de alta gravedad, con una temperatura de 30°C, tiempo de alimentación de mosto de 20 horas y tiempo total de 53 horas obteniendo como resultados una concentración de 126,12 g/L de etanol, reducción de 45,66% de consumo de agua, reducción de 38,03% de generación de vinaza y reducción en el consumo energético de 38,35%. Se requirió de un software matemático para la resolución de los modelos matemáticos de fermentación y un simulador de procesos químicos para la resolución de los balances de materia y energía en las columnas de destilación.
Referencias
Arshad, M., Hussain, T., Iqbal, M., & Abbas, M. (2017). Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian Journal of Microbiology, 48(3), 403–409.
Ccopa Rivera, E., Yamakawa, C. K., Saad, M. B. W., Atala, D. I. P., Ambrosio, W. B., Bonomi, A., Junior, J., & Rossell, C. E. V. (2017). Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions. Biochemical Engineering Journal, 119, 42–51.
Christofoleti-Furlan, R. M., Portugal, C. B., Varize, C. S., Muynarsk, E. S. M., Alcarde, A. R., & Basso, L. C. (2020). Unraveling Brazilian bioethanol yeasts as novel starters for high-gravity brewing. Food Research International, 135(February), 109282.
Debourg, A. (2010). Yeast management and high gravity fermentation. Cerevisia, 35(1), 16–22.
Feng, S., Srinivasan, S., & Lin, Y. H. (2012). Redox potential-driven repeated batch ethanol fermentation under very-high-gravity conditions. Process Biochemistry, 47(3), 523–527.
K?osowski, G., & Mikulski, D. (2018). Complementarity of the raw material composition of Very High Gravity (VHG) mashes as a method to improve efficiency of the alcoholic fermentation process. Process Biochemistry, 74(August), 1–9.
Lin, Y. H., & Liu, C. G. (2014). Process design for very-high-gravity ethanol fermentation. Energy Procedia, 61, 2725–2728.
Liu, C. G., Lin, Y. H., & Bai, F. W. (2011a). A kinetic growth model for Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity environment. Biochemical Engineering Journal, 56(1–2), 63–68.
Liu, C. G., Lin, Y. H., & Bai, F. W. (2011b). Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation. Journal of Biotechnology, 153(1–2), 42–47.
Magazoni, F. C., Monteiro, J. B., Deucher, R., Da Costa Filho, M. V. A., Cardemil, J. M., & Colle, S. (2009). Cooling of ethanol fermentation process using absorption chillers. ECOS 2009 - 22nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 1465–1476.
Marcato, A. C. de C., Souza, C. P. de, Paiva, A. B. de, Eismann, C. E., Navarro, F. F., Camargo, A. F. M., Menegário, A. A., & Fontanetti, C. S. (2019). Hybrid treatment system for remediation of sugarcane vinasse. Science of the Total Environment, 659, 115–121.
Nagarajan, S., & Ranade, V. V. (2020). Pre-treatment of distillery spent wash (vinasse) with vortex based cavitation and its influence on biogas generation. Bioresource Technology Reports, 11, 100480.
Otieno, B., & Apollo, S. (2021). Energy recovery from biomethanation of vinasse and its potential application in ozonation post-treatment for removal of biorecalcitrant organic compounds. Journal of Water Process Engineering, 39(July), 101723.
Pereira, F. B., Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology, 101(20), 7856–7863.
Phukoetphim, N., Salakkam, A., Laopaiboon, P., & Laopaiboon, L. (2017). Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models. Journal of Biotechnology, 243, 69–75.
Silva, A. F. R., Magalhães, N. C., Cunha, P. V. M., Amaral, M. C. S., & Koch, K. (2020). Influence of COD/SO42? ratio on vinasse treatment performance by two-stage anaerobic membrane bioreactor. Journal of Environmental Management, 259(January).
Yamakawa, C. K., Ccopa Rivera, E., Kwon, H., Herrera Agudelo, W. E., Saad, M. B. W., Leal, J., Rossell, C. E. V., Bonomi, A., & Maciel Filho, R. (2019). Study of influence of yeast cells treatment on sugarcane ethanol fermentation: Operating conditions and kinetics. Biochemical Engineering Journal, 147(March), 1–10.
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2022 Adolfo Enrique Guerrero Escobedo, Jorge Luis Mendoza Bobadilla, Juan Adolfo Guerrero Llúncor, Carlos Vasquez Blas, Ronald Fernando Rodriguez Espinoza, Santos Ricardo Celis Rojas